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Abstract

The three-dimensionai linear stability of the viscous wake far behind a ship at low Froude numbers is
analyzed. It is assumed that the wake has reached a self-similar parailel flow state, around which the
Euler equations are linearized. The stabliity problem is formulated as an eigenvalue problem for waves
travelling paraliel to the direction of the ship. It is found that the wake becomes unstable, and that the
instability is of the convective type. The free-surface manifestation of the instability wave exhibits a
characteristic staggered pattern of alternating hills and valleys, which is antisymmetric about the axis of

the wake. For low Froude numbers, the frequency and phase-velocity of these gravity waves is

determined by the characteristics of the shear flow in the wake.



1 Introduction

The purpose of this paper is o investigate the instability of the viscous wake of a ship, and its
manifestation on the ocean surface (figure 1). The best known identifiable feature of the flow behind a
ship is the Kelvin wave pattem. The Keivin wave pattem has been extensively studied, because it
constitutes the main source of ship resistance at high speeds. The viscous wake of the ship has received
much less attention, since it is tor most ships thin, and it has often been assumed that its influence on the
wavemaking of the ship can be neglected, even though there is some important evidence for the contrary
(Tatinclaux, 1870). In recent years, however, the interest in the viscous wake of the ship has acquired a
whole new dimension, in connection with the problem of satellite surveillance of the ocean. As aerial
pictures of the ocean reveal, the viscous wake of the ship persists at large distances behind the ship. In
fact, owing possibly to the ship's disturbing the bislogical contents of the water near the ocean surface,
viscous wakes of ships are often visible in sateliite pictures fong after any hydrodynamic effects of the
ship have been dissipated. Thus, the viscous wake, even though thin, leaves a very persistent "trace" of
the ship on the ocean surface, and offers an effective means of ship detection. [n particular, identification
of unsteady flow-pattemns in the wake that are capable of perturbing the free surface can be very helpful
in detecting the presence of ships in the ocean. A solution of the problem through direct simulation of the
Navier-Stokes equations is still impossible, owing to the very high value of the Reynolds numbers of ships
(typically 10%). Recently, Swean (1987) has performed computations of the steady high-Reynolds
number flow past a ship using a parabolic approximation to the Navier-Stokes equations, and a K, ¢
madelling of turbulence. His study shows the structure of the average flow in the wake of the ship, but
does not address the issue ot the stability of the the wake.

in this paper an attempt is made to study the unsteady patterns in the far wake of a ship by looking at
one specific important aspect of the problem, namely the imeraction between the instability of the wake
far behind the ship and the ocean surface. Peregrine (1971), in a notable paper, studied the diffraction of
the ship-generated waves by the viscous wake, using an earlier theory developed by Longuet-Higgins
and Stewart (1961) for the diffraction of water waves by non-uniform currents. This theory is valid for
waves with wavelengths much shorter than the width of the wake; such short wavelengths are stable.
The problem discussed here is the generation of gravity waves by the shear-flow type of instability of the

wake, and is therefore valid for waves with wavelengths comparable with the width of the wake.

The problem is formulated as follows: In agreement with the recent computations of Swean (1987), it is



assumed that, sufiiciently far behind the ship, the average flow in the wake reaches a self-similar state.
Then the stability of small perturbations around the self-similar state is formulated. The perturbation has
the form of waves that propagate parallel to the axis of motion of the ship, and have an eigenfunction type
of dependence in the other directions. An eigenvalue problem is obtained for the frequency which is
solved numerically for the unstable modes. From the computed eigenvectors, the shape of the free-

surface manifestations of the instability waves is determined.

2 Formulation of the problem

Wae consider the finear instability of the viscous wake of a three-dimensional floating object at large
distances behind the object. Let x,y,z be a system of coordinates fixed on the object. The axis x is
parallei to the oncoming flow, the axis :z parallel and opposite to the direction of gravity, and y is
perpendicular to the other two (see figure 1). For low Froude numbers, the steady waves generated from
the ship are mainly of the transverse type. Consequently, the ocean surface lying above the viscous
wake is free of steady waves and can be considered approximately flat. The average flow in the far wake
can thus be approximated by half of the "double body” one, which far from the object tends to become
axisymmetric. This implies that far behind the ship the average velocity becomes independent of the
angle 8 = atan(zfy) in the y,z plane, reaching asymptotically a self-similar state. Recently, Swean{1987)
computed the steady flow past a ship using parabolic Navier-Stokes equations. Swean's results show
that indeed the average-flow tends to become self-similar as assumed above; his computational resuits
show good agreement with the experimentat resuits of Mitra, Neu and Schetz (1985,1986). If U(x,y,2)
represents the average velocity in the x direction in the wake we have that U = U(x,), where r= \f)T:z-z-.
Furthermore, the wake varies slowly in the x direction so we can approximately set U = U(r). We will
study the stability of this flow to small perturbations. We assume that all velocities have been non-
dimensionalized with respect o the free stream velocity U/, the pressure with respect to pU_2 { p is the
density), and all lengths with respect to the width b of the wake. Consistent with this non-

dimensionalization the acceleration of gravity g will be repiaced in the equations of motion by 1/F2,

where £ is the Froude number defined as F = U hﬁy/wl gb.

The linearized equations of motion about the time-averaged flow, written in the system of the cylindrical

coordinates x,r,0, are {Drazin & Reid, 1981):
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The continuity equation is:
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In equations (1) through (4), u,,ug,u, are respectively the components of the perturbation veiocity along
the directions r.0.x; p is the dynamic pressure, i.e. the pressure minus the hydrostatic one -F2:

{otherwise, the Froude number would appear as a constant forcing in the z-direction).

On the free surface we have the kinematic and the dynamic boundary conditions. Let n(x.y.t) be the
non-dimensional displacement of the free surface, and u, the component of the velocity perpendicuiar to

the free surtace, considered positive when pointing upwards. Then on 8=0,-x the linearized kinematic
boundary condition is :

5
ot adx ®

and the dynamic boundary condition can be written as :

Finally, for 7 = Vy*+z2 —> o, u,,ug,u,p,m tend to zero.

In order to obtain the dispersion relation of the flow, we set all quantities proportional 1o e?(kx-©9
where k., are the wavenumber and frequency; for notational simplicity we keep the same symbols

p.u,, ug, 4, for the transtormed quantities. The dispersion relation is then given by the following set ¢*
equations:
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subject to the boundary conditions at the free surface, and at infinity. The former become:

HkU-w)n =u, (1
p=F17 (12
whereas the latter remain as they where, i.e. for r = Vy?+2> — oo, u,, ug,u,,p,m tend to zero.

Because of the boundary conditions on the free surface, we found it more convenient express the
perturbation velocities in terms of the perturbation pressure. To this purpose, we multiply equation (7) by

ik, and operate on (8) wilh d/(r 99); then by adding the two and using (10), we obtain an equation relating
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We now use equation (9) to eliminate 4, from (13) and obtain, after some term regrouping, the fallowing
pantial difterential equation for p(r,0):

¥ 10p 1% ~2p-248U% _ g (14)
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For the houndary conditions on the free surface, we note that on

8=0,u,=ug, whereason 0 = -r, u_ = -u,. In combined form, the relation between u_,u, on 8=0,—-n
can be written as follows:

U = 1, COS (8) as)

By eliminating therefore n and u, the two boundary conditions at the free surface (11), (12) can be



combined into a single condition of the mixed type, as follows:

oos(&)(kU—m)zep-—;g—g=0 on 6=0,-x (16)

Finally, we impose the condition that far from the wake the perturbation vanishes, i.e.

pir.8) =0 r — s an

Equations (14), (16), (17) define for any given & an eigenvalue problem for the frequency w; that is to say,

they constitute the dispersion relation for gravity waves propagating above the wake of the ship.

3 Fourier Series Solution

We note that because of the linearity of the problem and the symmetry of the average tiow U(r) around
the plane y =0, it is possible to decompose any arbitrary disturbance into two pans: one in which the
perturbation pressure is anti-symmetric around y =0, which we wili call Mode |, and one in which the
pressure is symmetric around y = 0, which we will call Mode Il (see figure 2). Thus, given that the free
surtace displacement is proportional 1o the value of the perturbation pressure there, Mode | disturbs the
free surface in an antisymmetric manner around y = 0, whereas Mode il disturbs the free surface in a

symmetric manner. The fact that the two modes are separable facilitates the numerical solution of the

problem.

3.1 Mode |

We start with mode [, which from its definition satisfies the following anti-symmetry conditions:

p(r,—m) = - p(r,0) (18)

Pr0y=2¢r -
E(r.o)— ae(rv TC)

Since the initial flow is independent of the angle 6, it is convenient to expand p(r,0) in a cosine-series in
terms of the angle 6. In accordance with the antisymmetric character of Mode |, the Fourier series will

contain odd-order coefficients only. Therefore we set:

p(r8) =Y p,(r)cos(n0) (19)
=1

where in (19) it is implied that the summation is carried over ali odd » onty; the same convention applies



for the rest of this section. The coefficients p,(r) of the Fourier series in (19) are given by:

1 0
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In an infinite fluid direct substitution of (19) into (14) will yield an infinite set of uncoupied ordinary
ditterential equations for p (r), compeletely equivalent to those obtained for the perturbation velocity by
Batchelor and Gill, 1962. In the problem considered here, however, owing to the mixed boundary
condition at the free surface, double differentiation of the Fourier series with respect to 6 yields a
divergent Fourier series for 32p/06%. One way to to overcome this difficuity, is to independently expand
a%p/39* in a cosine series in 6, and express the cosfficients p, in terms aof the coefficients of the Fourier
expansion of 32p/002. This accounts to integrating twice the cosine-series expansion of ap/26%, which is

always possibte, rather than differentiating twice p. Therefore we set:

Pp
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where a,(r) are given by:

3 P
a (r) = E -aB—GOS(ﬂe) (22)

-r
8y substituting (19), (21) into (14) we obtain the following equations
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We now express p, in terms of a,. This can be done by integrating by parts twice equation (22):
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or, equivalently, by using the definition of a,(r)in (22) and the symmetry conditions {18), we have:

an(r) 2 1
por) = - — +EF2r(}cU—m)2 p(r,O); (23)




From {18), we have that p(r,0) is given by:
prOY = p.(n (26)
m=1

Consequently, by substituting (25) into {(26) we express p(r,0) in terms of a,(r) :

« 20 2, 2
prl) = 3 ~ — * = FirkU-m)? p(r0) Q @n
m=1

where Q in equation (27) is the following constant:
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We now can solve equation (27) for p(r,0), which gives:
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We substitute (29) irmo (25); this yields the expression of the coefficients p, in terms of the coefficients
a,r):
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Substitution of (30} into (23) will give an infinite set of coupled homogeneous ordinary differentiai
equations containing only a,(r), subject to the boundary conditions that a,(r) vanish as r — «. Thus, fora
given &, an eigenvalue problem is defined for the frequency w. This approach, however, is not
appropriate for the numerical solution of the problem, since the eigenvaiue problem is non-linear with
respect 10 the eigenvalue . Although the problem can, presumably, still be solved by shooting,
performing shooting on a iarge set of simultaneous difierential equations seems very difficult. Instead a

different approach has been implemented, that leads to a set of equations depending linearly on @. This
is explained in section 4.

We now discuss the behaviour of the solution for » — «. Assuming that F > 0, for r — ==, equation {30)



is reduced to:

ar 113 a,
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We substitute (31) into (23); then since dU/dr (r — =)} — 0 we obtain:
1 4%a, yda, o 1 ,d2§ 14§

_Z(E_i-+??_ a, ) 'l‘F ( pﬂl’;E—sz) =0 a=13,.. (32)

where in equation (32) S stands for:
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We now sum equations (32) over all n, and using equations defining Q.S (28), (33) we obtain:

2
‘ir_f+é%§-kzs -0 (34)

We substitute (34) back into (32). This gives:

da 1da,

”
—5 e, = 0 n= 13, 9

From equation (35) we conclude that for r — oo, a,(r) behaves iike a zeroth order Bessel function; the
behaviour of such functions for large arguments is thus given by (Abramowitz and Stegun, 1970):

a,(r) - — exp(—k7) 36)
Nr

Thus the eigenmode decays exponentially with the distance from the mid-axis of the wake. Equation (36)

is useful in the numerical solution of the problem as a truncation condition for the infinite domain.

3.2 Mode Il

Mode It satisfies from its definition the following symmetry retations:
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p(r,0) = p(r,-m) (3D
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The eigenvalue problem for Mode |l can thus be formulated in exactly the same manner as for Mode |,
with the difference that the Fourier series will now contain only the even order terms. We omit the details

of the derivation, and simply report that only Mode | was found to be unstable.

4 Numerical solution

In this section we describe the numerical solution of the eigenvaiue problem for the Mode 1. We start by

introducing the auxiliary functions G(r), H(r), defined as follows:

G(r)=2F%r(kU-w)? p(r0) (38)

H(r)=2Fr(kU-w) p(r.0) (39

From their definition in (38), (39) the two auxiliary functions G,H are related by:

G =FkU-w)H({r) 40)

We multiply both sides of equation (27) by 2 Fr(& U~ w) and use the definitions of G . H in equations (38),
(39) to obtain:

HO) = 2Fr@U-0) Y, () + 225 60— 0)60) @D
m=l M n

Since we are solving for Mode |, the summation in (41) is carried out over odd m only. In terms of the new

variables, equation (25) can be re-written as:

160
P, = n2+ﬂ = {42)

Then by substituting (42) into (23) we obtain;
d2a

", 4G 146G
dr?

da, 2 da,
k=) (—or gt =B+ e, - L E2 el iy - (2 - 180y < 0 “3)
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Equations (40), (41) and (43), together with the conditions that the unknown functions
H(r),G{r},a,(r) n=1,3,5,.. vanish for r - «, define for any given k an eigenvalue problem that depends
linearly on the eigenvalue w. Consequently, if we truncate the domain to 0 <r <R, and use finite-
differences to approximate the derivatives in (43) at specified points r, i=12,.N, the discretized
versions ot equations (40), (41) and (43) define a generalized algebraic eigenvalue problem for ®. The
latter can be soived using standard algorithms.

We now assume that, for numerical computation purposes, the Fourier series is truncated after M
terms, and that N points are used in the finite-difference grid. Then we form a compound eigenvector X of
order (M+2)x N as follows: The first ¥ positions of the eigenvector are occupied by the values of H(r) at
the ¥ discretization points r;, i=1,2,..N, the next N positions by the values of G(r), the next N positions
by the values of a,(r), and so on; finally, the last N positions are occupied by the vaiues of ay(r) at the

discretization points. Then the discretized equations can be combined in a single matrix equation of the
form;

AeX = ©BeX (44)

where A, B are compound matrices of order ((M+2)N)x (M+2)N). In general, depending on the required
value of M, the order of the eigenvalue problem can be quite high, and require enormous amounts of
computation. For low values of the Froude number £, which are of interest here, the coupling between
the coefficients g, is weak (of order F2), and the Fourier series converges after just a few terms.
Furthermore, ihe decomposition into mode | and Il proves quite helpful in that respect, since for the mode
1, using M coefficients implies that the series has been truncated at the (2M+1)-th term. As a result, for

low £, the required value of M is jow, and the order of the eigenvalue problems is such that can be
handled with the standard Q-Z algorithms.

For the sel-similar average flow, the fallowing non-dimensional velocity distribution can be assumed:

U(r)=1-A exp(—-ar?) (45)

For the calcutations reported here, the values A = 0.368 , o = 0.89 were used. Those are the values for
the self-similar profile measured by Ogata and Sato (1966), far behind an axisymmetric body in infinite
fluid. We have thus assumed that the velocity profile behind this object being half-submerged will be haif

of that in an infinite fluid at the same Reynoids number. For low Froude numbers, the eigenvalues were
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found to depend very weakly on the Froude number and on the number of Fourier modes used in the
expansion.

Thus, for Froude numbers up 1o 0.5, which covers the range of interest of the present study, the
computed frequency was found to be practically independent of the Froude number (to within one per
cent). The mapping of the k-real axis into the complex w-plane is shown in figure 3, for a Froude number
equal to 0.5. For all Froude numbers up tp 0.5, the most unstable wave was found for a wavenumber
equal to 0.55, which gave a complex frequency (0.4525, 0.0170). This value is aimost identical with the
one occuring in infinite fluid. Therefore, for the problem at hand, the phase veiocity of the unstable gravity
waves above the wake is controlled by the shear flow characteristics. The free surface displacement A

can easily by calculated from the computed values of H(r) (which occupy the first N positions of the

compound eigenvector x) as follows:

FH(

- 52 =
A=F p(r.O) = zr(k—U'(r)—-_m_) (46)

The variation of the free surface displacement generated by the most unstable wave-mode aiong an
x = constant plane as a function of the coordinate y is shown in figure 4. Oniy half of the displacement is
shown, i.e. for 0 < y < «. Far away from the wake, the elevation decays exponentially with the distance y.
The vertical scale is arbitrary, since an eigenfunction is plotted. Again the dependence of the eigenmode
on the Froude number was found very weak. The phase of tha free surface elevation of the same
eigenmode is shown in figure 5 (again only the pan 0 < y < « is shown). The free surtace elevation in the
middle ot the wake, where the fluid velocity is reduced, lags behind the elavation outside the wake, where
the fluid velocity has its free-stream vaiue. The fact that lines x = constan: on the free surface are not
constant phase curves shows that the wavecrests of the eigenmodes will be curved. A three-dimensional
computer made visualization of the free surface displacement is shown in figure 6, construcied on an IRIS
machine. A length equal to two wavelengths of the disturbance is represenied. The free surface
elevation produced by the instability wave consists of two paraliel series of altemating hills and valleys, in

agreement with its antisymmetric character.

Finally the character of the wake instability was determined , i.e. whether it is of the absolute or the
convective type. The procedure suggested in Triantafyliou et al. (1987) was followed, in which the
complex wavenumber plane is mapped through the dispersion retation into the comptex frequency plane;

the pinch-point type of double roots are located from the local angle-doubling property of the map. If
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these points lie in the upper half o plane the instability is absolute; eise it is convective. For this problem
the instability was found to be convective for all low Froude numbers (including zero Froude number).

This means that the wake acts as a spatial amplifier, i.e. under a time-harmonic forcing, spatially growing
waves are produced.

5 Conclusions

The main outcome of this investigation is that the interaction hetween the instability of the wake and
the ocean surface resuits in an antisymmetric pattern. This pattern consists of two parallel series of "hills"
and "valleys", and is antisymmetric about the line of motion ot the ship; the phase velocity of the wave is
controlied by the characteristics of the shear flow in the wake. This "chessboard" type of pattern is
certainly very characteristic, and it remains to be seen whether it is readily identifiable too. The fact that
the instability of the wake is convective, implies that unstable wave groups will be convected with the

mean flow and ampiified in space. Possible excitation sources for the wake instability are ambient waves,

or even the unsteadiness of the Kelvin wave pattern.

An important simplfication in this study was offered by the self-similarity assumption. An interesting
question then is how the above conclusions will be madified, if the self-similarity assumption is dropped.
This problem maodels the stability of the wake close to the ship, where the average flow is not self-simitar.
In fact, in reality, owing to the presence of the propeiler, a self-similar state might be reached very far
behind the ship. Therefore this improved analysis will be pertinent to the part of the wake where the
instability waves are excited before they propagate into the sel-similar part of the wake. For a wake that
is not self-similar, the average flow itself should be expanded in a Fourier series. This will render the
analysis of section 3 considerably more complicated. Furthermore the numerical effort required wiil be
higher, because the Fourier coefficients in the expansion will be strongly coupled, even for low Froude

number (and thus M will be high). This extension is therefor far from trivial, and is planned as a future

investigation.
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Figure Captions

Flgure 1: Definition figure.

Flgures 2a, 2b: Anti-symmetric (1) and symmetric mode (il) in the wake.

Figure 3: Highest Branch map of the k-real axis into the complex w-plane.

Figure 4: Amplitude of the free-surface displacement as a function of y for the most-unstable wave.

Figure 5: Phase of the iree-surface displacement as a function of y for the most-unstable wave.

Flgure 6: Perspective view of the free-surtace manifestation of the most-unstable wave.
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